A NEW GENUS AND SPECIES OF PHILOPTERIDAE (PHTHIRAPTERA: ISCHNOCERA) FROM THE TRUMPETERS (AVES: GRUIFORMES: PSOPHIIDAE)

Michel P. Valim* and Jason D. Weckstein
Field Museum of Natural History, Department of Zoology, 1400 South Lake Shore Drive, Chicago, Illinois 60605. e-mail: mpvalim@hotmail.com

ABSTRACT: A new chewing louse genus and species belonging to the Philopteridae, namely, Psophiicola foedus n. gen., n. sp., is described. The new genus is distinguished from the other ischnoceran genera hitherto described by its peculiar characters such as the postero-lateral projections, the mesomere and paramere lacking inner digitiform projection, and the genital region of female with postero-vulvar plates bearing setae. It is a parasite of the trumpeters, an avian family endemic to South America’s Amazon Basin.

Currently, only 2 species of chewing lice, Psophiicola foedus (Nitzsch, 1866) and Eulaemobothriorn gracile (Giebel, 1874), are known to parasitize the species of trumpeters (Psophia Linnaeus, 1758), members of the avian Psophiidae (Gruiformes), endemic to the Amazon Basin. These 2 louse species are considered as widespread and known to parasitize many species of Psophia (Price et al., 2003). Eulaemobothriorn gracile is an amblyceran louse in the Laemobothriidae, whereas Psophiicola foedus, sometimes regarded as a Rallicola Johnston & Harrison, 1911 species, is associated with the ischnoceran philopterids. The Philopteridae is the most species rich family within the insect order Phthiraptera and encompasses approximately 55% of the total ischnoceran chewing louse species described. The philopterids include >140 described genera (~46% of the generic diversity within Phthiraptera), with an exceptional diversity of morphological variation and habitat specialization on different regions of the host body (Price et al., 2003; Mey, 2004). Most avian host species are parasitized by several species of philopterids, and often each of these philopterids specializes on a different region of the host body (Clay, 1949; Johnson and Clayton, 2003).

Most recently described Phthiraptera genera from Philopteridae were erected from well-established generic complexes of species already characterized and described, e.g., the Philopterus-complex (Mey, 2004). However, 2 recently described genera, Caracaricola (Mey and Gonzalez-Acuña, 2000) and Corcorides (Mey, 2004), were proposed based completely on newly discovered distinct morphotypes of lice. The new genus proposed here also is based on the discovery of a completely distinct morphotype within Philopteridae.

The new genus herein described belongs to the Rallicola-complex due the presence of 2 long and stout tubercle-bearing setae on the ventro-lateral edge of segment IX. The Rallicola-complex is currently composed of 2 genera, Rallicola Johnston & Harrison, 1911 and Pessoariella Guimaraes, 1940 (sensu Clay, 1953). Rallicola is currently divided into 3 subgenera, including the nominals Aptericola Harrison, 1915 and Hiwacola Mey, 1990. However, there are 6 additional synonyms accepted by Clay (1953) and Price et al. (2003) for Rallicola, including Corycica Carriker, 1949; Epipicus Carriker, 1949; Furnaricola Carriker, 1944; Oncophorbus Piaget, 1880 (nec Rudow, 1870); Parricola Harrison, 1915; and Pessoiciola Eichler, 1982. Here, we follow the classification of the Rallicola-complex proposed by Price and Emerson (1987). We suggest that Osculotes Kéler, 1939 is also a member of this complex because it has the defining feature of the Rallicola-complex, i.e., 2 long and stout tubercle-bearing setae on the ventro-lateral edge of segment IX and because our molecular analysis is also consistent with this hypothesis (see below). Further studies including both morphological and molecular data are needed to better resolve the generic limits within the heterogeneous Rallicola s.l. However, the morphological and molecular data presented herein are sufficient to distinguish the new genus from those included in this complex, as well as from other philopterid genera.

MATERIAL AND METHODS

We collected the specimens for this study by using the ethyl acetate fumigation technique as described in Bueter et al. (2009); additional specimens were obtained by ruffling bird skins. All of the specimens were mounted on slides following the procedures of Palma (1978). We used the nomenclature for cephalic setae as proposed by Clay (1951) as modified by Mey (1994). The somatic body parts measured and their abbreviations are as follows: preocular length (POL), preocular width (POW), temple width (TW), head length (HL), dorso-anterior plate length at midline (DPLM), dorso-anterior plate length at lateral (DPL), dorso-anterior plate width (DPW), prothorax length (PL), prothorax width (PW), metathorax length (ML), metathorax width (MW), abdomen width at segment V (AWV), paramera length (PAL), genitalia width at basal apodema (GW), genitalia length (GL), and total length (TL). All measurements are given in millimeters. Host names for Psophiidae follow Oppenheimer and Silveira (2009) and Ribas et al. (2011).

The molecular methods used by us are the same as those described by Bueter et al. (2009) and modified by Valim and Weckstein (2011) to extract DNA and sequence a 373-base pair (bp) fragment of the mitochondrial cytochrome oxidase I (COI) gene and 347 bp of the nuclear elongation factor 1-alpha (EF1α) gene. We sequenced these genes from samples of the new genus collected from 2 distinct host species (Psophia dextralis and Psophia napepsis) to assess and document their genetic distinctiveness and the phylogenetic relationship with other genera of Philopteridae. DNA sequences, voucher numbers, and locality data for sequences that we generated for this study are deposited in GenBank (JQ717179–194) and include data from the 2 species of the new genus and 1 Aptericola gadowi s.l. ex Apteryx sp.; Rallicola (Parricula) irediparlar Price & Emerson, 1987 ex Iredipara gallinaceae (Temminck, 1828); Pessoariella abitiva (Kellogg, 1910) ex Opisthocomus hoazin (Statius Müller, 1776); Psophiicola foedus ex Psophia leucoptera Spix, 1825; Rallicola (Rallicola) advenus (Kellogg, 1896) ex Fulica americana Melnich, 1879; and Rallicola (Ralllica) kelloggi Emerson, 1957 ex Rallus limicola Vieillot, 1819. We constructed a 32 taxon generic level Philopteridae database by aligning our COI and EF1α DNA sequences with Philopteridae and outgroup (3 lice from the ischnoceran trichodectids, goniodids, and heptapogasterids) COI and EF1α sequences published by Cruickshank et al. (2001) (AF320355–56, AF320360–62, AF320365, AF320368, AF320371–72, AF320378–81, AF320384, AF320386–88, AF320393–95, AF320399–400, AF320407, AF320410, AF320427, AF320432, AF320435, AF320437, AF320442–43, AF320448–49, AF320451, AF320454–55, AF320457, AF320461, AF320464–66, AF320468–69, AF320476–77); Johnson, Adams, et al. (2001) (AF348658–60, AF348665, AF348854); Johnson, Moye et al. (2001) (AF348658–60, AF348665, AF348854);
and Very small and stout specimens. Head as long as wide (Rasp.Apsp.3.3.2011.4) are R.*Ibidoecus* (*A. gadowi*), *Habitus* as in Figure 2. Features and chaetotaxy of head and *Anterior dorsal head plate with 2 posterior pointed* (*Genital opening set termino-dorsal. Genitalia distinctive, with Valim and Weckstein, gen. nov.* longer (*). *Ibidoecus* (*Rake.1.3.2011.13), they are indicated by field numbers and, where available, specimen vouchers are deposited in the Museu Paraense Emı́ Paulo, Brazil (MZUSP), and paratypes and *Location and hosts: Site of infection:* Based on the body shape, probably the head and neck feathers.

Location and hosts: South America, trumpeters (*Guirifomes: Psophiidae*).

Etymology: Named in honor to Ricardo L. Palma who is currently one of the leading authorities on the bird lice of the world and has made important contributions to our knowledge of both the taxonomy and evolutionary biology of this group. His efforts, friendship, and support have helped to motivate and encourage M.P.V. to endure in his studies of this group of insects. The suffix *–ulus* (*L.*), masculine, means small, and is used here in an affective way and because of the small body dimensions of this new genus. Gender masculine.

Palmaellus inexpectatus Valim and Weckstein, *sp. nov.*

(Figs. 1–7)

Male: Habitus as in Figure 2. Features and chaetotaxy of head and thorax as indicated under generic description. Abdominal tergal central setae for holotype: II–VIII, 2, but V. 3. Variation on males examined: II–III and IV–V, 3 setae on each side. Anterior preantennal suture shorter setae short and present only on segment VII, without tracks of associated sensillus. Stermites without central plates, except on VI in males; II–VI with row of medium long setae. Terminal segment rounded.

Female: Vulva convex, slightly concave medially. Vulvar margin with medium long setae and subterminal spiniform setae, with tubercle on ventro-lateral edge of segment IX bearing 2 long (rarely 3 on 1 side), stout setae. Below vulvar margin, postero-vulvar plates bearing long setae on each side.

Nymph: Unknown.

Taxonomic summary

Site of infection: Based on the body shape, probably the head and neck feathers.

Descriptions

Palmaluss Valim and Weckstein, gen. nov.

Diagnosis: Anterior dorsal head plate with 2 posterior pointed projections, 1 on each side of plate (Fig. 1). Plate unique compared with all other philopterid genera. Most philopterid genera that specialize on living on host head possess only 1 medial posterior projection, or less often, with straight posterior margin. *Ibidococcus* Cummings, 1916 (not in *Rallicola*-complex), with 2 similar posterior projections, 1 on each side of anterior dorsal head plate; anterior dorsal head plate split medially into 2, whereas plate distinctly entire in new species (Fig. 1). Furthermore, characters such as body size, body chaetotaxy, and male genitalia completely differentiate *Ibidococcus* and *Palmaluss*.

Both sexes: Very small and stout specimens. Head as long as wide (Fig. 1). Hyaline margin of forehead moderately developed and enclosing anterior dorsal head plate at anterior margin. Anterior dorsal head plate entire and square-like, without traces of striation; with straight anterior margin and with 2 conspicuous posterior projections, 1 on each side of plate. Anterior ventral head plate indistinct. Dorsal preantennal suture not dividing marginal carina, marginal carina short and reaching at most anterior ventral seta 3. Ventral carina longer than marginal carina, reaching anterior seta 2 and ventral submarginal setae 2. Anterior dorsal setae (a.d.s) long in males (0.06) and almost indiscernible, but present in females; set on soft tegument of dorsal preantennal suture. Anterior setae 1 (a.s.1, a.s.2, a.s.3) shorter (0.02); anterior seta 2 (a.s.2 longer (0.05–0.10); anterior ventral setae 1 and 3 (a.v.s.1, a.v.s.3) sub-equall in length (0.06–0.08). Ventral sub-marginal seta 1 (v.s.m.s1) slightly longer (0.06) than ventral setae (0.04). Conus distinct. Antennae filiform and essentially similar in both sexes. Eyes large, ocular seta (o.s) medium long (0.03–0.08); preocular (p.o.s) and marginal temporal-1 (m.t.s1) setae longer (0.01–0.02); marginal temporal 2, 4, and 5 (m.t.s2, m.t.s4, m.t.s5) setae slightly longer (0.03–0.04); marginal temporal setae 3 (m.t.s3 very long (0.22–0.29). Dorsal sub-marginal seta (d.s.m.s) and prenodal seta (p.n.s) 3X longer (0.03–0.05) than preconal (p.c.s) and preantennal (p.a.s) setae (0.01). mandibular setae (m.d.s) medium long (0.04). Postterminal (p.t.s) and dorsal operculal (d.o.s) setae shorter (<0.01). See Figure 1 for detailed chaetotaxy.

Prothorax entirely, with slightly divergent sides and 1 postero-lateral seta (-0.10 long) on each side, plus 3 short anterior dorsal setae on each side (not pronomal marginal anterior setae, sensu Mey, 1994). Pterothorax not divided, each side with 1 short lateral seta, 1 long lateral trichobothrium (-0.12), 1 medium long sublateral (-0.04–0.07), 2 very long (-0.22–0.27), 1 sublateral and other posterior, and 1 medium long seta at posterior margin, on each side. Sternal plates very indistinct, more discernible in some specimens on mesosternum. One pair of long meso- and metasternal setae present. Legs without distinctive characters, on II–III outer dorsal setae very long and 1 claw much longer than other claw.

Abdomen oval, with tergites II–VIII medially divided. Tergal plates as long and slender paramera almost straight to slightly curved inward, with 1 submarginal sensillus and 1 terminal with seta barely discernible; long and simple mesosoma occupying 2/3 of paramera length, with superficial rugosity in its posterior end represented by vestigial sensillae and 2 submarginal sensillae with distinct setae.

Palmaellus inexpectatus Valim and Weckstein, gen. nov., sp. nov.

(Figs. 1–7)
Figure 8. Maximum likelihood phylogram of the Rallicola-complex clade taken from the larger 102 taxon philopterid DNA dataset. Numbers above nodes (in bold) are maximum likelihood bootstrap support, whereas those below the lines (in regular type) are maximum parsimony bootstrap support. Only support values >50 are shown on the trees. Arrow indicates the Rallicola-complex clade.

Taxonomic summary

Type host: Psophia dextralis Conover, 1934 (Psophiidae), brown-winged trumpeter.

Other hosts: Psophia crepitans Linnaeus, 1758; gray-winged trumpeter; Psophia napensis P. L. Sclater & Salvin; and 1873, gray-winged trumpeter napensis.

Site of infection: Probably the feathers of head and neck.

Type locality: Plot of the Brazilian Program for Biodiversity Research (PPBIO) (01°57′S, 51°36′W), Floresta Nacional (FLONA) do Caxiuanã, Portel, Pará, Brazil.

Prevalence and mean intensity: Prevalence 50% and intensity 3.0 on P. dextralis; and prevalence 100% and intensity 6.0 on P. napensis.

Other localities: Colombia and Surinam.

Repository: Male holotype and 1 female paratype taken off P. dextralis are deposited in MZUSP, 1 female paratype (DNA voucher) off P. dextralis in FMNH; 1 male and 3 females off P. napensis in MZUSP, 1 male off P. crepitans, and 1 male and 3 females (one DNA voucher) off P. napensis in FMNH.

Etymology: The species name (an adjective in masculine form) refers to the unexpected nature of the discovery of a new species of chewing lice on the well-studied trumpeter hosts.
DISCUSSION

Morphological data indicate that *Palmaellus* gen. nov. is a novel morphotype, different from all other described philopterid genera. For example, the uniquely shaped anterior dorsal head plate with 2 posterior pointed projections (Fig. 1) is not shared by any other described philopterid genera. Genetic data are also consistent with this unique morphology (Fig. 8). Uncorrected pairwise *p*-distances calculated from the COI and EF1α sequences between the *Palmaellus* gen. nov. specimens and all other philopterid genera in our molecular data set show substantial differences, averaging 29.9% (range, 16.9–35.7%) for COI and 12.6% (7.2–18.2%) for EF1α.

Palmaellus gen. nov. is provisionally monotypic. However, DNA sequences between the *Palmaellus inexpectatus* gen. nov. et sp. nov. collected from the different host taxa (*P. dextralis*: DNA voucher Gennov.Psvi.1.3.2011.8 and *P. napesini*: DNA voucher Gennov.Pscr.1.3.2011.10) and different geographic regions, differ at both COI and EF1α by 15.3 and 1.4% uncorrected *p*-distance, respectively. Although these are moderate genetic differences, and sometimes enough for specific differentiation (e.g., Valim and Weckstein, 2011), there are no obvious morphological features that differ between these specimens and thus we are not certain whether the populations of *Palmaellus* gen. nov. found on these hosts are evolving on their own separate evolutionary trajectories. One possibility is that the small series of specimens available to us is not sufficient for discerning either discrete or quantitative morphological differences. In the future, a larger series of specimens for a deep morphological comparison and additional population level genetic data may clarify the species limits in this group. Thus, it is possible that more than 1 species level taxon is involved within this new genus.

The new genus proposed exhibits several morphological characters that are consistent with it belonging to the *Ralloicola*-complex. Phylogenetic analysis of COI and EF1α DNA sequences also support this hypothesis (Fig. 8). In all 5 MP trees (TL = 7629, CI = 0.107, RI = 0.390), the 2 *Palmaellus inexpectatus* gen. nov. et sp. nov. specimens are placed within a clade of *Ralloicola*-complex members that all share the presence of 2 long and stout tubercle bearing setae on ventro-lateral edge of segment IX. These include *Aptericola*, *Furnaricola*, *Ralloicola* (*Ralloicola*), *Ralloicola* (*Parricola*), *Pessoaicola*, *Psophicola*, and *Osculotes*. The ML tree topology is similar and contains the same clade with slightly different internal relationships. Both MP and ML bootstrapping indicate strong statistical support for the node uniting the 2 *P. inexpectatus* specimens. Neither analysis indicates strong statistical support for the monophyly of the *Ralloicola*-complex including *P. inexpectatus* gen. nov. et sp. nov. However, if this topology is correct, then the *Ralloicola*-complex contains 4 Amazonian endemic lice, *Osculotes* and *Pessoaicola*, and *Psophicola* and *Palmaellus* gen. nov., which are found on Hoatzin (*O. hoazin*) and trumpeters (*Psophia* spp.), which are both Amazonian endemic bird lineages.

ACKNOWLEDGMENTS

We thank Alexandre Aleixo (Museu Paraense Emílio Goeldi, Belém, Brazil), Shannon Hackett, and John Bates (FMNH) for support and assistance during fieldwork, collection of the data presented herein, or both. We also thank David Willard for giving us permission to ruffle lice from *Psophia* skins deposited in FMNH collections; and Petra Sierwald, who made her National Science Foundation-Partnerships for Enhancing Expertise in Taxonomy–funded microscope available for our use. This work was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil with a postdoctoral fellowship 200453/2010-6 to M.P.V.; National Science Foundation grants DEB-0515672 and DEB-1120054 to J.D.W.; and the FMNH’s Emerging Pathogens Project, funded by the Davee Foundation and the Dr. Ralph and Marian Falk Medical Research Trust. DNA sequencing was carried out at FMNH’s Pritzker Laboratory for Molecular Systematics and Evolution, operated with support of the Pritzker Foundation.

LITERATURE CITED

