Category: Article

Tags

    Published: January 14, 2011

    Morphological integration of the turtle shell: the effects of plastral hinging

    Stephanie Ware, Manager, Morphology Labs, SEM

    KEEGAN MELSTROM

    Freshman Geology major at University of Michigan

    REU Mentor: Dr. Kenneth Angielczyk (Curator, Geology)

    Symposium Presentation Title: Morphological Integration of the Turtle Shell

    Symposium Presentation Abstract: The turtle shell is one of the most distinct evolutionary novelties among tetrapods. Though the shell is a recognizable feature of all turtles, there is significant variation in the function and morphology of the shells of various species. One of these differences is the presence of a hinge on the plastron or ventral shell. Using landmark-based geometric morphometrics our research sought to explore the link between plastral hinging and the organization of modules within the shell. We digitized over 1,800 turtles, from the families of Emydidae, Geoemydidae, and Kinosternidae, from photographs. A principal components analysis was then run which demonstrated that a major component of variation in plastron shape was correlated with presence or absence of a hinge. This is an expected result because the evolution of a hinge typically accompanies the replacement of the bony bridge between the carapace and plastron by a ligamentous connection.  Using canonical variates analysis confirmed this result by showing that plastra of kinetic and akinetic turtles could be classified with a high degree of accuracy. We then used the method of Klingenberg (2009) as implemented in the program MorphoJ to test a priori hypotheses for the presence of different modules. The number of modules varied from two to four, and we tested their locations throughout the plastron. The majority of turtles possessing a kinetic hinge had two distinct modules, one in the anterior portion of the shell, the second in the posterior. This line of separation is the location of the hinge. Given that most turtles with a kinetic hinge have this particular modular placement, despite belonging to several distantly related clades, one may conclude that plastron shape is independent of phylogeny. This analysis and others demonstrate that plastral kinesis has a strong effect on plastron shape, and this effect seems to extend to patterns of modularity, but to a lesser degree. This may indicate that functional selection, in the case for plastron shape, is less strongly affected then the modules in the plastron.

    Original Project Description: The morphologies of many organisms display patterns of integration, where developmental, functional, or other interactions between parts cause groups of characters to undergo evolutionary changes as a single unit. The turtle shell is one of the most distinctive evolutionary novelties among vertebrates, and there are a priori reasons to think that different turtles may display different patterns of integration in their shell morphology. In particular, some turtles possess a hinge on their bottom shell, or plastron, that allows the plastron to be closed up against the carapace (upper shell). We would expect the shapes of the plastron and carapace to be integrated in hinged turtles so that a tight fit can be maintained when the shell is closed, but hingeless less turtles may show little or no integration between their plastron and carapace because they do not have this constraint.

    Research methods and techniques: In this project we will first collect shell shape data from hingeless and hinged turtle species using the collections of The Field Museum. Then, in collaboration with Dr. Peter Roopnarine (California Academy of Sciences), we will use a new method for detecting patterns of integration in the turtle data set. The intern will be trained in the collection and analysis of geometric morphometric data, analysis of morphological integration, and the use of phylogeny as a framework for analyzing comparative data.


    Stephanie Ware
    Manager, Morphology Labs

    Stephanie started volunteering at the Field Museum in 1998, working with Curator John Bates in the Bird Division. In 1999, John Bates hired her as a research assistant. After that project finished in 2007, she went to work for Carl Dick in the Division of Insects helping him to complete his work on the museum's Bat Fly collection. She spent a great deal of time generating images for the Bat Fly portion of theDiptera Taxonomy Database. When Carl left for University of Kentucky in 2009, she continued her imaging work in the Insect Division. In the intervening years, she has imaged hundreds specimens, mostly types, from the rove beetle (Staphylinidae), ant and myriapoda collections.

    Stephanie began working with the Chicago Peregrine Program in 2006.  Initially, she monitored the Metropolitan Correctional Center nest in downtown Chicago.  Over time, her duties have expanded to include other nests in the metro region, emphasizing the identification of nesting adults.  In March of 2007, Stephanie created a group called Midwest Peregrine Falcons on the photo sharing website Flickr with the goal of providing a place for photographers across the country to submit their photographs of peregrine sightings in the Midwestern United States. She also has many of her own peregrine photos on Flickr as well.